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The problem of front stability of a shock wave expanding in the direction of lower densities of the me-
dium is an interesting problem for a very wide class of nonlinear motions: Forexample, phenomena such as
atmospheric outburst [1] or turbulization of a gas cloud and of dust following nuclear explosions in the atmo-
sphere [2], the emergence of large-scale turbulence in envelopes of blazing stars of the supernova type [31,
and front propagation with gradiental accelerations in laboratory investigations [4} are in one way or another
related with lack of stability of supersonic motions. Theoretical analysis has shown that the front of a strong
shock wave (of Mach number M >>1) propagated in a medium of decreasing density is unstable. The analysis
was carried out in [5, 6] in the case of no magnetic field and in the case of a magnetohydrodynamic shock wave
in a linear approximation with regard to perturbations. Random deflections in the front, in which separate
elements are ahead of the front or trail it, grow with time; the latter proves to be true even if one uses thenon-
linear corrections applied in this article if there is no magnetic field. The evolution of small distortions of
the front of a shock wave propagated in a uniform gas was considered in {7] and in more detail {for arbitrary
state equation of the gas) in [8]. In the case of a strong shock wave the results obtained in these articles follow
directly from the results obtained in the present article and show that in 2 uniform medium the front remains
stable for known state equations.

§1. Let an unperturbed plane front of a strong shock wave move along the normal in the positive direc-
tion of the x axis, and let the density of the unperturbed gas p ((X) decrease in the same direction, In the cases
of either exponential or power laws for the density drop, the front velocity u(X) and its position X(t) can be de-
termined by numerical integration of the equations containing the self-consistent variable. Approximate values
of these quantities can be found using the Chisnell ~Whitham method (see, for example, [9]). Considerable im-
provements to this method were obtained in [10]; it was shown that
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where v is the adiabatic index of the matter, whereas in {9] the index was given by 1.., = 2 4 V2v/(y—1).

The method as well as the notation used in [5, 6, 10] will be used in our further considerations. However,
to develop further the method, as well as to obtain nonlinear corrections, the front perturbations, in contrast to
the above-mentioned methods, are not assumed at first to be small, Let the coordinate of the perturbed-front
region be E (y, t) = X(t) +E(y, t), and its angulardeviationfrom the plane onebe 8 =arctan{(d{/dy). Theoriginis
now transferred to the point & and the coordinate axes are rotated in such a way that y' is tangential to the
front. When fransferring to the new variables, the derivatives which appear in the equations of hydrodynamics
are replaced in the following manner:

9

8 8, . a. 8 8 .
3;——c05667—rsm6d~y~,, *cosed—y,—slne

dy 6111
é 0 = o, . o8 (., a . 8
TR e — — 18 re Bl = — T S
ot at (cosﬁdr ' medy) G(y oz dy')

By integrating the equations of hydrodynamics in the form of conservation laws over an infinitely small
region near a discontinuity one finds
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j=pBcosh, v,=rvcosb.

In the case of an ideal gas, by setting € =p/p (¥ —1) and after simple algebraic transformatlons one ob-
tains from the system (1.1) the following relations at the front:
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where M = E/cy; ¢ = (ypo/po)¥?, and for 6 =0 the last relations become familiar; this follows from the Hugoniot
adiabat, However, in the general case one can see that the relations (1.2) correspond to a shock polar for the
portion of the slanting front or to the Buseman conditions expressed in the laboratory reference system, that
is, in a system in which an unperturbed gas remains at rest. The planes 8 = M~! determine the maximal slope
of slanting fronts, these planes containing the Mach lines for perturbations which start at the front and are prop-
agated to the unperturbed gas [11].

- If spontaneous front deflections are present or its deformations due to some random variations of the
unperturbed density 3p,, the hydrodynamic functions differ downward the stream from the unperturbed values
by the quantities 5p, 6v, 8 p, and the front velocity differs by su = B — u(X + &) = & + u(X) — w(X + &).
Small front perturbations which are characterized by the lengthwise (in the propagation direction) and cross-
wise wave numbers ky, ky, so that the quasiclassical approximation is valid for the lengthwise (parallel to x)
wave motions and the front distortions are sufficiently smooth, are considered.

By varying the boundary conditions (1.2) in the case of a strong shock wave, a system of equations is ob-
tained in the first approximation for the front deflection:
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where a change va—-ovx—évg{ was carried out for velocity variation with a possible random velocity of dis-

placement dv ;’{ of the medium upstream taken into account.

It is now convenient to consider all downstream thermodynamic functions as functions of pressure and
entropy. Correspondingly, any small front distortion is accompanied by downstream perturbations in the gas
of two kinds — entropy or sonic. In the latter form of motion the amplitudes of velocity and pressure are con-
nected by the standard relation for sound (in the quasiclassical approximation)., As regards the density pertur-
bations, the latter is equal to the sum of the perturbations due to the above two forms of motion, although it is
not advisable at this point to separate the density change into its two components. No other independent modes
of eigenoscillations and, in particular, no "surface ones" exist which would be analogous insofar as they also
take place for a tangential discontinuity in the case of a shock front. Indeed, if one seeks the solution for these
modes in the form of 8p, 8o, ~exp (xz - iky — iot) in the domain x < 0, that is, downstream, then it follows
from the linearization of the hydrodynamics equations that (xv — i©)év,—=—x8p/p;(® + ixv)év, = kSp/p. Moreover,
if §p=0, then dvy =0, which contradicts the continuity of the tangential component of the velocity at the front;
upstream from the front only an unperturbed gas can be found, but the condition dp=0, vy =0 is invalid for
real n.

A sound wave arriving from the opposite direction is now considered falling on the front with relative
changes of density and velocu:y given, respectively, by 8po/ps = 6v,/c, ~ exp (—ik,z -+ iwt). If the medium is en-
tropic, that is, if py~ po , then by the classical approximation one has the amplitude 8p ,~ po (V-9 where v =
3y —1) /4, Whlch also agrees with the conservation law for flows of scund velocity p ocodv =const [12] The
sonic wave refracted at the front of a strong shock wave is propagated orthogonally to the front with an ac-
curacy up to M~ ! even if the encounter is at an angle [13]. The latter indicates that in the case of a weak front
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deflection one has 3p=—pcdvy in the quasiclassical approximation. Substituting the latter into the last equa~
tion of the system (1.3) and solving it for the perturbations of the front velocity, one obtains approximately
(neglecting quantities of the order of M~}

du=Et — Edu/dX = — 2o189,/00-

Now one integrates the latter equation in the adopted approximation; the front displacement is thus ob-
tained as a function of the coordinate of the unperturbed front:
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where u=u(X); po=p (X} pog=poXps; 6vy=0vy(Xy; £ is the initial front displacement. If there is no sonic
wave, then spontaneous displacements and deflections of the front grow with time according to the rule £ ~u

[5, 6]. For example, for propagation in a medium with exponentially decreasing density one has X~In py &~
p-lo . The incidence with the front of a sonic wave induces additional front displacements of an oscillatory
kind which for y =5/3; Ay=0.2; v =1 grow more rapidly than the spontaneous ones. Deviations from constant
density can be regarded as perturbations (then du=¢). In this case the application of the formulas (1.3) directly
yields the Chisnell —Whitham relation {u ~ p=A9). Since this conclusion is based on the quasiclassical approxi-
mation, it obviously points to the relatively small part played by long-wave perturbations.

The motion of the front is now considered in a homogeneous and, on the average, weakly turbulent
medium, so that the upstream motions of the medium can be represented as a superposition of chaotically
distributed sonic waves. The front displacement in the field of one such wave is determined by using the
formula (1.4):
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where Ar is the displacement of the gas particles in a sound wave. The displacement {g =Ar /cos(k, x) whose
projection on the direction of the wave vector is equal to the actual displacement of the particles is now intro-
duced into our considerations. By multiplying the relation (1.5) by £* (y', t'), setting Ar(X(ty)) =0, and averaging
over the ensemble of waves, one obtains
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where K (v, x) =§§ 7, t) £ (0, 0) is the correlation function of the front displacements.

To compute the displacements in the second approximation, that is, the nonlinear correction ¢, by varying
the boundary conditions (1.2), one must again set 6p=—pcdv,and take into account that du=£,-£, du/dX-
(£3/2)du/dX2.  The following differential equation is then obtained:
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and in the case of exponential density one has
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where £4,< £, if A <l (the inequality is also valid for ¢, =<i).

If in the first approximation the growth of front displacements from the equilibrium position takes place
symmetrically with respect to lagging behind or outstripped displacements, then asymmetry arises if nonlinear
corrections are used: The outstripping takes place relatively more rapidly than the lagging behind of the front
elements, this effect being more substantial the greater the amplitude of the displacements and the front de-
flection.

§2. The motion of a medium with an arbitrary state equation is considered. In this case it is advisable
to modify the procedure for varying the boundary conditions. Having differentiated the first equation of the sys-
tem (1.1) and employed the principles of thermodynamics, one finds the equation connecting the increments of
pressure and of density on the Hugoniot adiabat:
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where T is the Griineisen constant, and c¢?=(8p /p)s. If one now employs the remaining equations of the
system (1.1), one obtains in a similar manner

(dp/ov)g = 2§11 + (j*/p®)(8p/0p)g] 2. ©.1)

The motion of a strong shock wave when the upstream gas pressure can be ignored, the variation of the
gas pressure downstream being dp= (ap/av)Hdv +(9p/3p ) 8 po, is now considered. The derivative which ap-
pears in the latter expression can be determined for a constant gas velocity from the system (1.1), (3p/3p Py =
i2002[1-(8p=1/8 p=1);]. On the other hand, on ha bef == ing di
‘e [l—(9p Py )yl. On the other hand, on has, as before, 6p pcdv. By varying directly the second
relation of (1.2) one finds Sp=pupdv +p Wy +vuydp 9> Wwhere up =u cos 6 is the rate of its displacement
normal to the surface. By comparing all three pressure variations one finally obtains

Su, _ 8py 1— u, (pe + pou) PR
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2.2)
The above formula is obviously a generalization of the Chisnell ~Whitham formula not only in the case of an
arbitrary state equation, but also for a front in motion at an arbitrary angle to the direction of density reduc-
tion.

In a medium which is homogeneous in density the variation p, must be set equal to zero; since the equa-
tions are homogeneous, all other variations must also vanish, excluding only the case in which the denominator

in the square brackets in (2.2) vanis_hés, that is, pc +(8p/ 9v)gr=0. The latter can, with the aid of the relation
2.1), be transformed into :

fm) =1+ m — am¥1 — m)/(1—am?) = 0,
where a =(T'/2) (p/p, —1); m= [u —vl/c is the downstream Mach number.

For compression waves, if the inequality 0 < m <1{14]is valid, the above condition can hold provided a> 1.
For an ideal gas one has g =1, £> 0 and the front remains stable. A condition was obtained in [8] which ensures
that the function f(m) crosses the zero value for an unstable front in a single-phase medium, though in a some-
what different manner. This condition is satisfied only for a special form of the Hugoniot adiabat.
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