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The problem of front stabili ty of a shock wave expanding in the direction of lower densities of the me-  
diium is an interest ing problem for a ve ry  wide class  of nonlinear motions:  For  example , phenomena such as 
al:mospheric outburst  [1] or turbulizat ion of a gas cloud and of dust following nuclear  explosions in the a tmo-  
sphere  [2], the emergence  of l a r g e - s c a l e  turbulence in envelopes of blazing s t a r s  of the supernova type [3], 
mad front propagation with gradiental  acce lera t ions  in labora tory  investigations [4] a re  in one way or another 
re la ted  with lack of stabil i ty of supersonic  motions. Theoret ica l  analysis  has shown that the front of a s t rong 
shock wave (of Mach number  M >>1) propagated in a medium of decreas ing density is unstable. The analysis 
was ca r r i ed  out in [5, 6] in the case of no magnetic field and in the case of a magnetohydrodynamic shock wave 
in a l inear approximation with r ega rd  to perturbat ions.  Random deflections in the front,  in which separa te  
elements are  ahead of the front or t ra i l  it, grow with t ime;  the latter proves to be t rue even if one uses thenon-  
l inear cor rec t ions  applied in this ar t ic le  if there  is no magnetic field. The evolution of small  distort ions of 
the front of a shock wave propagated in a uniform gas was considered in [7] and in more  detail (for a r b i t r a r y  
state equation of the gas) in [8]. In the case  of a s t rong shock wave the resul ts  obtained in these ar t ic les  follow 
direct ly  f rom the resu l t s  obtained in the present  ar t ic le  and show that in a uniform medium the front r emains  
stable for known state equations. 

w 1. Let an unperturbed plane front of a s t rong shock wave move along the normal  in the positive d i rec -  
t*ion of the x axis,  and let the density of the unperturbed gas p 0(X) decrease  in the same direction. In the cases  
of either exponential or  power laws for the density drop, the front velocity u(X) and its position X(t) can be de- 
te rmined by numer ica l  integration of the equations containing the sel f -consis tent  variable.  Approximate values 
of these quantities can be found using the Chisne l l -Whi tham method (see, for example, [9]). Considerable im-  
provements  to this method were obtained in [10]; it was shown that 

U ~ p o  ~, ~ , = 2 + ~  

where T is the adiabatic index of the mat ter ,  whereas in [9] the index was given by ~,0 = 2 + ~/27/(7--l). 

The method as well as the notation used in [5, 6, 10] will be used in our fa r the r  considerat ions.  However, 
to develop fur ther  the method, as well as to obtain nonlinear cor rec t ions ,  the front per turbat ions,  in cont ras t  to 
the above-ment ioned methods,  are  not assumed at f i r s t  to be small.  Let the coordinate of the per turbed-f ront  
region be E (g, t) -~ X( t )  + ~ (g, t)~ and its angulardevia t ion f rom the plane one be 0 = arc tan(d~/dy) .  The origin is 
now t r a n s f e r r e d  to the point ~ and the coordinate axes are  rotated in such a way that y '  is tangential to the 
front. When t r ans f e r r i ng  to the new var iables ,  the derivatives which appear in the equations of hydrodynamics 
a re  rep laced  in the following manner :  

~g, 0 o o , 0--~176 o = cos 0 --  sin 0 o~" =cosOT~ ,Ts in  oy" o-~ 

" ~ =  -J/ '--  " cos0~7,~s in  ~ g, o __x, . ~  

By integrating the equations of hydrodynamics in the fo rm of conservat ion laws over  an infinitely small  
region near  a discontinuity one finds 
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t 
8 (p, p) - -  80(p0 , Po) = T ( P +  O0)(P7 ~ . P--l) ,  (L1)  

P = P o d - ] v ,  v = ] (p~- i - -  p - t ) ,  

] = P0~ cos 0, v~ = v cos  0. 

In the case  of an ideal gas ,  by set t ing s = p / p  (3' -1 )  and a f t e r  s imple  a lgeb ra i c  t r a n s f o r m a t i o n s ,  one ob-  
ta ins  f r o m  the s y s t e m  (1.1) the following re l a t ions  a t  the front :  

-P- V~- ~ (~,-- t) cos~O/' (1.2) 

where  M = ~/Co; co = (Tpo/Po) z/~, and for  0 =0 the las t  r e l a t ions  become  fami l i a r ;  this  follows f r o m  the Hugoniot 
adiabat .  However ,  in the genera l  case  one can see  that  the re la t ions  (1.2) co r r e spond  to a shock polar  for  the 
port ion of the s lant ing f ront  or  to the Buseman  conditions e x p r e s s e d  in the l abo ra to ry  r e f e r e n c e  sys t em,  that 
is ,  in a s y s t e m  in which an unper turbed  gas r e m a i n s  at r e s t .  The planes 0 = M -1 de te rmine  the max imal  slope 
of s lant ing f ron t s ,  these planes containing the Mach l ines for  per tu rba t ions  which s t a r t  at the f ront  and a r e  p r o p -  
agated to the unper turbed  gas  [11]. 

If spontaneous f ront  deflect ions a r e  p r e sen t  or  its de format ions  due to some  r andom var ia t ions  of the 
unper turbed  densi ty 5p 0, the hydrodynamic  functions differ  downward the s t r e a m  f r o m  the unper turbed  values  
by the quanti t ies  5 p ,  5 v ,  5 p ,  and the f ront  ve loci ty  d i f fers  by 6u = E - -  u( X ~ ~) = "~ ~ u( X)  - -  u( X ~ ~). 
Small f ront  per tu rba t ions  which a r e  cha rac t e r i zed  by the lengthwise (in the propagat ion direction) and c r o s s -  
wise  wave numbe r s  kx, ky, so that  the quas ic l a s s i ca l  approximat ion  is val id for  the lengthwise (paral lel  to x) 
wave motions and the f ront  d is tor t ions  a r e  sufficiently smooth,  a r e  cons idered .  

By vary ing  the boundary  conditions (1.2) in the case  of a s t rong  shock wave,  a s y s t e m  of equations is ob- 
tained in the f i r s t  approx imat ion  for  the f ront  deflection: 

Y d- 1 ~Po, 

�9 2 ~  ^ 8v~ a ' = ~ + + ~ g o u ~ ( ~ .  0 +  u - z - ~ ) ,  

where  a change 5v x--~ 5v x -  5v ~ x was c a r r i e d  out for  ve loc i ty  va r i a t i on  with a poss ib le  r a n d o m  veloc i ty  of d i s -  
p lacement  5v o of the medium u p s t r e a m  taken into account.  

It is now convenient  to cons ider  al l  downs t r eam the rmodynamic  functions as  functions of p r e s s u r e  and 
entropy.  Correspondingly ,  any sma l l  f ront  d is tor t ion is accompanied  by downs t r eam per tu rba t ions  in the gas 
of two kinds - entropy or  sonic.  In the la t te r  f o r m  of motion the ampl i tudes  of ve loc i ty  and p r e s s u r e  a r e  con- 
nec ted  by the s tandard  re la t ion  for  sound (in the quas i c l a s s i ca l  approximat ion) .  As r e g a r d s  the densi ty p e r t u r -  
ba t ions ,  the la t te r  is equal to the Sum of the pe r tu rba t ions  due to the above two f o r m s  of motion,  although it is 
not advisable  at this  point to s e p a r a t e  the densi ty change into its two components .  No other  independent modes  
of e igenosci t la t ions  and, in pa r t i cu la r ,  no " su r f ace  ones"  exist  which would be analogous insofar  as  they a l so  
take place  for  a tangent ia l  discontinui ty in the case  of a shock front .  Indeed, if one seeks  the solution for  these  
modes  in the  f o r m  of 6p, 8vx,~ ..~exp (ux -t- iky - - i ( o t ) i n  the domain x < 0, that is ,  downs t ream,  then it follows 
f r o m  the l inear iza t ion  of the hydrodynamics  eqtmtions that  (uv - - io) )Sv~-- - - -uSp/p;  (~o'--~ iuv)Svv --~ kSp/p. Moreover ,  
if 5p  ~ 0, then 5Vy ~ 0 ,  which con t rad ic t s  the continuity of the tangential  component  of the ve loc i ty  at the front;  
u p s t r e a m  f r o m  the f ront  only an unper turbed  gas can be found, but the condition 5 p = 0 ,  5v  x ~ 0 is  invalid for  
r e a l  ~t. 

A sound wave a r r i v i n g  f r o m  the opposi te  d i rec t ion is now cons idered  fa l l ing  on the f ront  with r e l a t i ve  
changes of densi ty  and veloci ty  given, r e s p e c t i v e l y  , by 590/00 ----- 8Vo/Co ... exp ( - -~=x -}- ioat). If  the med ium is en-  
t rop ic ,  that is ,  if P0 ~ P  ~, then by the c l a s s i ca l  approximat ion  one has the ampli tude 8p 0 ~ p~(V,l ) ,  w h e r e  v =  
( 3 T - 1 ) / 4 ,  which a lso  a g r e e s  with the conserva t ion  law for  flows of sound veloci ty  p 0c05v0~=const [12]. The 
sonic wave r e f r a c t e d  at the f ront  of a s t rong  shock wave  is propagated  or thogonal ly  to the front  with an a c -  
cu r acy  up to M --1 even if the encounter  is at an angle [13]. The la t te r  indicates  that in the case  of a weak f ront  
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de, f lect ion one has 3 p = - p c ( ~ v  x in the quas i c l a s s i ca l  approximat ion .  Substituting the la t te r  into the las t  equa-  
tion of the s y s t e m  (1.3) and solving it for  the pe r tu rba t ions  of the front veloci ty ,  one obtains approx imate ly  
(neglecting quanti t ies  of the o rde r  of M -~) 

6u -~- ~ - -  ~du/dX = --  ~,oUfPo/p0, 

Now one in t eg ra te s  the l a t t e r  equation in the adopted approximat ion;  the front  d i sp lacement  is thus ob- 
tained as a function of the coordinate  of the unper turbed  f ront :  

r t u ' dx  ,~ ( 1 . 4 )  �9 ~-.~r00 [P00~ vexp - - i k  x ( X - X o ) - ~ i o )  r - - ~  ' 

Xa 

where  u=u(X);  p0=P0(X); P o o = P o f X o ) ;  5v00=hv0(X0); ~ 0 is the initial f ront  d i sp lacement .  If the re  is no sonic 
wave,  then spontaneous d i sp lacements  and deflect ions of the front grow with t ime  accord ing  to the ru le  ~ ~ u 
[5, 6]. For  example ,  for  p ropaga t ion  in a med ium with exponential ly dec reas ing  densi ty  one has X ~ ln  P0; ~ ~ 
p,TX0 : The incidence with the f ront  of a sonic wave induces additional f ront  d i sp lacemen t s  of  an osc i l l a to ry  
kind" which for  T = 5/3; 2, 0 = 0:2; v = 1 grow m o r e  rap id ly  than the spontaneous ones. Deviations f r o m  constant  
densi ty  can be  r e g a r d e d  as pe r tu rba t ions  (the n ~ u = ~ ). In this case  the appl icat ion of the fo rmu la s  (1.3} d i rec t ly  
yiields the C h i s n e l l - W h i t h a m  re l a t ion  (u ~ I~0X0 }. Since this conclusion is based  on the quas i c l a s s i ca l  approx i -  
mation,  it obviously points to the r e l a t ive ly  sma l l  pa r t  played by long-wave per tu rba t ions .  

The motion of the front  is now cons idered  in a homogeneous and, on the ave rage ,  weakly  turbulent  
medium,  so that the u p s t r e a m  motions of the med ium can be r e p r e s e n t e d  as a superpos i t ion  of chaot ical ly  
d is t r ibuted  sonic waves .  The front  d i sp lacement  in the f ield of one such wave is de te rmined  by using the 
fo rmula  (1.4): 

(y ,  t) = ;~~ cos(~, z) far (y, X) -- Ar (y, Xo)l, (1.5) 

where L~r is the displacement of the gas particles in a sound wave. The displacement } s =L~r/cos(k, x)whose 
projection on the direction of the wave vector is equal to the actual displacement of the particles is now intro- 
duced into our considerations. By multiplying the relation (1.5) by ~* (y', t,), setting ~r(X(t0))=0, and averaging 
over the ensemble of waves, one obtains 

(y', t ') ~ (y, t) = ~2 IK (y'.-- y; X (t') - -  X (t)) --  K (y' - -  y; X (to) - -  X (t))l, 

where  K (Y, x) = ~ (y, t) } s (0, 0) is the eo r re l a t ion  function of the front d i sp lacements .  

To compute  the d i sp lacements  in the second approximat ion ,  that is ,  the nonl inear  co r rec t ion  ~ 2 by va ry ing  
the boundary  conditions (1.2), one must  again set  6 p = - p c 6 v  2 and take into account that  ~ u = ~  2-~  2 d u / d X -  
(~ 2/2)d2u/dX~. The following di f ferent ia l  equation is then obtained: 

and in the case  of exponential  densi ty  one has 

2 

t ) ( r  i),  0x/z, Po ,v exp (--  X / l ) ,  ~,, = ~ ~.e - -  e ~) --~ = 

where  ~ 2 < ~ l, if Z 0~ 0 < l (the inequali ty is a lso  valid for  ~ 0 _~l ). 

If in the f i r s t  approx imat ion  the growth of front d i sp lacements  f r o m  the equi l ibr ium posit ion takes  place 
s y m m e t r i c a l l y  with r e s p e c t  to lagging behind or outs t r ipped  d i sp lacements ,  then a s y m m e t r y  a r i s e s  if nonlinear 
co r r ec t i ons  a r e  used:  The outs t r ipping takes  place r e l a t ive ly  m o r e  rap id ly  than the lagging behind of the front  
e l ement s ,  this effect  being m o r e  substant ia l  the g r e a t e r  the ampli tude of the d i sp lacements  and the f ront  de-  
f lection.  

w The motion of a med ium with an a r b i t r a r y  s ta te  equation is considered.  In this case  it is advisable  
to modify the p rocedure  for vary ing  the boundary condit ions.  Having different ia ted the f i r s t  equation of the s y s -  
t e m  (1.1) and employed the p r inc ip les  of t he rmodynamics ,  one finds the equation connecting the inc rements  of 
]pressure and of densi ty  on the Hugoniot adiabat :  

Op ~ = c 2 [i --  r (p -- po)/2pc ~] (@/~T)p 
~'PJn l ' - - r ( p - - # o ) / 2 # o  ' F =  pC v 
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where  r is the Gri iae isen constant ,  and c2= (Up/Op) s. If one now employs  the r ema in ing  equations of  the 
s y s t e m  (1.1), one obtains  in a s i m i l a r  manner  

( opIov)H = 2] [1 + (i~/o~)( OplOp)~]-l. (2.1) 

The motion of a s t rong  shock wave when the u p s t r e a m  gas p r e s s u r e  can be ignored,  the var ia t ion  of the 
gas p r e s s u r e  downs t r eam being 6 p =  (0p/0v)H~V + ( O p / a p o  ) 5 P0, is now considered.  The der iva t ive  which ap-  
pea r s  in the la t te r  express ion  can be de te rmined  for  a constant  gas veloci ty  f r o m  the s y s t e m  (1.1), ( S p / a p  o)v = 

j2p~2[l_ ( a p - 1 / O  p~l)v]. On the o the r  hand, on has,  as  be fore ,  5 p = - p c S v .  By vary ing  d i rec t ly  the second 
re la t ion  of (1.2) one finds 5 p =p oUn~ v +p 0v6 a n +run5 p o, where  u n =u cos 0 is the r a t e  of its d i sp lacement  
n o r m a l  to the s u r f a c e .  By compar ing  all  th ree  p r e s s u r e  va r i a t ions  one finally obtains 

u--'~---- P0 L ~ ( P - ~ - + ~ H )  _ i - - ~ ) J "  (2.2) 

The above fo rmula  is obviously a genera l iza t ion  of the C h i s n e l l - W h i t h a m  fo rmula  not only in the case  of an 
a r b i t r a r y  s ta te  equation , but a lso  for  a front  in motion at  an a r b i t r a r y  angle to the d i rec t ion of densi ty r ed u c -  
tion. 

In a med ium which is homogeneous  in densi ty  the va r ia t ion  ~ip 0 mus t  be set  equal to zero;  s ince the equa-  
t ions a r e  homogeneous,  al l  other  vaxiat ions  mus t  a l so  vanish,  excluding only the case  in which the denominator  
in the square  b r ac ke t s  in (2.2) van ishes ,  that  is ,  p c  + ( 0 p / B y ) H = 0 .  The la t te r  can, with the aid of the re la t ion  
(2.1), be t r a n s f o r m e d  into 

/ (m)  -~ i + m i am~( i _ m ) l ( i _ a m  ~) = O, 

where  a = (F/2) {PIP0 - 1); m = I u - v i l c  is  the downs t r eam Much number .  

Fo r  c o m p r e s s i o n  waves ,  if the inequali ty 0 < m < 1 [14] is valid~ the above condition can hold provided a > 1. 
Fo r  an ideal gas one has a =1, f >  0 and the f ront  r e m a i n s  s table.  A condition was obtained in [8] which ensu re s  
that the function f(m) c r o s s e s  the ze ro  value for  an unstable  f ront  in a s ing le -phase  medium,  though in a s o m e -  
what d i f ferent  manner .  This  condition is sa t i s f ied  only for  a spec ia l  f o r m  of the Hugoniot adiabat.  
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